Circuit Training - Factoring (Mixed, Intermediate)

Name _____

<u>Directions</u>: Begin in cell #1. Factor the expression, then search for <u>one</u> of your factors. When you find it, call that problem #2 and continue in this manner until you complete the circuit. You may need to attach additional sheets of paper to showcase your best work.

Answer:	Answer: 2
#1 Factor the GCF: $24a^2b^3 - 56ab^2$	# If $m = -8$, then there is a unique solution to the equation $x^2 + mx + 16 = 0.$
	What other value of m yields just one solution?
Answer: $a-4$	Answer: $a-5$
# Factor: $49a^2 + 25b^2$	# Factor: $49a^2 - 9b^2$
Answer: $a-3$	Answer: $a^2 - 4a + 16$
# Factor by grouping: $ab + 7b + 3a + 21$	miswer. u Tu 10
	# The equation $s(t) = -5t^2 + 3t + 2$ gives the height, $s(t)$, in meters, of a diver at any time t , in seconds, where $t \ge 0$. When does the diver hit the water?
Answer: $4a - 5$	Answer: $a^2 - 5a + 25$
# Use factoring to solve the equation $x^2 - 2x - 3 = 0$.	# Factor: $9a^2 - 25b^2$
What is the sum of the solutions?	
Answer: $5(a-1)$	Answer: $a + 8$
# Simplify: $\frac{a^2-9}{a^2+5a+6}$ for $a > -2$.	# Factor: $49a^2 - 14a + 1$
Answer: $3ab - 7$	Answer: $a-2$
# Factor the trinomial $a^2 - 10a + 21$ so that it is the product of two binomials.	# Factor: $a^3 - 3a^2 + 5a - 15$

Answer: $2a - 1$	Answer: $7a + 2b$
# Rewrite the trinomial $2a^2 + 13a + 15$ as a product of two binomials.	# Factor the difference of squares: $a^2 - 25$
Answer: $3a + 5b$	Answer: 8
# Factor the difference of cubes: $a^3b^3 - 125$	# Factor: $a^3 + 64$
Answer: a^2	Answer: $a^2 + 5$
# Factor: $a^2 + 16a + 64$	# Factor: $4a^2 + 7a - 15$
Answer: 1 # Factor completely: $2a^3 + 2a^2 - 40a$	Answer: $a + 5$ # The trinomial $x^2 - 7x - 8$ can be written as the product of two binomials, $(x + a)(x + b)$. What is $a + b$?
Answer: $\frac{a-3}{a+2}$ # Write a trinomial that has $(3a + 17)$ as one of its two factors.	Answer: prime # Use factoring to simplify the rational expression: $\frac{5a^2-5}{a+1}$ (note $a \neq -1$).
Answer: -7	Answer: $ab-5$
# Factor $21a^4b^2 + 6a^3b^3$	# Factor: $9a^2 - 25a^2b$
Answer: $7a - 1$ # Factor completely: $a^4 - 8a^2 + 16$	Answer: $a^3 + 8$ # Factor the sum of cubes: $a^3 + 125$
Answer: $7a - 3b$	Answer: $a + 7$
#_10 Multiply: $(a+2)(a^2-2a+4)$	# Factor by grouping: $2a^2 - 14a - 1a + 7$
© Virge Cornelius 2017	

Circuit Training - Piecewise Functions (precalculus)

<u>Directions:</u> Begin in cell #1. Answer the question (show necessary work on this page or attach separate paper). Search for your answer. Call that cell #2 and proceed in this manner until you complete the circuit (get back to the beginning). No technology is needed!

__1__

Answer: 5

$$f(x) = \begin{cases} |2 - x|, & x \le 0 \\ 0.5x^2 - 5, & x > 0 \end{cases}$$

$$f(6) + f(-3)$$

Answer: 9

$$f(n) = \begin{cases} 3n+1, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

$$f\left(f\left(f\left(f\left(f(f(42))\right)\right)\right)\right)$$

Answer: 8

$$f(x) = \begin{cases} -x^3 + 4, & x < -2 \\ \frac{1}{2}x + 11, & x \ge -2 \end{cases}$$

$$f^{-1}(10)$$

Look up The Collatz Conjecture if this piques your interest!

_____ Answer: 13

Find the minimum value of the function w(x).

$$w(x) = \begin{cases} x^2 + 4x + 1, & x \le -1 \\ x - 1, & x > -1 \end{cases}$$

Answer: 18

$$g(x) = \begin{cases} \frac{x}{2}, & x = -2\\ 2^{x+3}, & x \neq -2 \end{cases}$$

$$g(-2)-g(0)$$

Answer: 7

$$w(x) = \begin{cases} x^2 + 4x + 1, & x \le -1 \\ x - 1, & x > -1 \end{cases}$$

Is w(x) continuous at x = -1?

If yes, go to answer 10.

If no, go to answer 5.

#

Answer: −16

#____ Answer: 6

Solve f(x) = 5. There are four solutions. Find the sum of the solutions.

$$f(x) = \begin{cases} -x^2 - 6x, & x < 1\\ \frac{1}{2}x, & x > 1\\ 5, & x = 1 \end{cases}$$

 $g(x) = \begin{cases} \frac{x+3}{x+2}, & x \neq -2\\ \frac{1}{4}, & x = -2 \end{cases}$

$$g(0) + g(-2) + g(2)$$

The graph shows the piecewise function

$$f(x) = \begin{cases} x^2 + b, x \le 0 \\ ax + c, x > 0 \end{cases}$$
 Evaluate $\frac{b+c}{a}$.

$$p(x) = \begin{cases} 9\sin x, & x < \frac{\pi}{2} \\ 2 + \cos x, & \frac{\pi}{2} \le x < \pi \\ \tan x, & x \ge \pi \end{cases}$$

$$\frac{p\left(\frac{2\pi}{3}\right)+p\left(\frac{\pi}{6}\right)}{p\left(\frac{5\pi}{4}\right)}$$

$$f(x) = \begin{cases} 5e^{x+3}, & x \le 0 \\ \ln x, & x > 0 \end{cases}$$

$$f(-3) + f(e^3)$$

$$w(x) = \begin{cases} \frac{|x-5|}{x-5}, & x \neq 5\\ x^3 - 121, & x = 5 \end{cases}$$

$$w(2\pi) + w(5) + w(-e)$$

Find b so that f(x) is a continuous function.

$$f(x) = \begin{cases} bx + 1, & x < 2\\ \frac{5}{2}x - 6, & x \ge 2 \end{cases}$$

$$p(x) = \begin{cases} 5x - 3, & x < -2\\ x^2 + 2x + 7, -2 \le x < 2\\ x^3 + 8, & x \ge 2 \end{cases}$$

What is the y-intercept of p(x)?

Answer: 2

Answer:

$$f(x) = \begin{cases} x - 5, & x < 0.5 \\ 3x + 1, & x \ge 0.5 \end{cases}$$

x	-7	-2	2	7
g(x)	0.5	-3	0	-6

$$g(f(2)) + f(g(2))$$

Find a so that h(x) is a continuous function.

$$h(x) = \begin{cases} \frac{x^2 + 7x - 30}{x - 3}, & x \neq 3\\ a, & x = 3 \end{cases}$$

Answer: 4

$$w(t) = \begin{cases} 4t^2 + 1, & t < -1 \\ t + 3, & t \ge -1 \end{cases}$$

The equation w(t) = 17 has two real solutions. Find the sum of the solutions.

$$v(t) = \begin{cases} \llbracket t \rrbracket, & t > 1 \\ |t - 3|, & t \le 1 \end{cases}$$

$$v(-2) + v(0) + v(1.42)$$

Circuit Training - Using Tables (pre-calculus)

Name_____

Directions: The following table shows selected values of three continuous functions f, g, and h. The function h is also strictly decreasing. Beginning in cell #1, use only the values in the table to evaluate the expressions or equations for the given x — value(s). Search for your answer. Call that cell #2 and proceed in this manner until you complete the circuit. For your convenience, the table is on both sides.

\boldsymbol{x}	f(x) - 2	g(x)	h(x)
0	- 2	3	4
1	3	$\sqrt{2}$	2
2	0	- 3	$\frac{3}{2}$
3	-1	$\frac{\pi}{4}$	0
4	6	$-\frac{4}{3}$	$-\frac{\pi}{2}$
5	7	- 3	- 3

Answer: $-\frac{\pi}{4}$

#_1_ $g(5) \cdot h(2)$

Answer: $\frac{3}{2}$

#____ $3g(1) + 2\sin(g(3)) + \cos(h(4))$

Answer: 3

____ For what value of x does h(x) = g(x)?

Answer: $-\frac{9}{2}$

#____ g(0) - f(1)

Answer: 4

_____ $\frac{g(3)}{g(4)}$

Answer: $-\frac{3\pi}{16}$

____ Find $g(h^{-1}(0))$

Answer: $\frac{\pi+16}{4}$

_____ $\frac{f(4)}{h(0)}$

Table:				8	Answer:	$2-\sqrt{2}$
x	f(x)	g(x)	h(x)			
0	- 2	3	4		#	Let $w(x) = e^{h(x)} + 5(f(x))^2$. Find $w(3)$.
1	3	$\sqrt{2}$	2 🛮			
2	0	- 3	$\frac{3}{2}$			
3	-1	$\frac{\pi}{4}$	0			
4	6	$-\frac{4}{3}$	$-\frac{\pi}{2}$			
5	7	- 3	- 3	50		
Answer:	$\frac{\pi}{4}$				Answer:	0
#	If $p(x) =$	$\frac{g(x)+5}{f(x)-6}$, fin	nd $p(3)$.		#	f(2) + g(3) + h(0)
Answer:	5				Answer:	6
#	Let $h^{-1}(x)$ be defined as the inverse of			nverse of		Let $r(x) = \sqrt{7 - f(x)}$. Find $r(0)$.
		and $h^{-1}(2)$.				
Answer:	$4\sqrt{2}$				Answer:	$\frac{\pi + 20}{-28}$
#	If $p(x) = h(x) - g(x)$, find $p(1)$.			(1).	#	Find the average rate of change of $h(x)$ on the closed interval $[0, 4]$.
Angurou	π 1				Answer:	1
Answer:	$-\frac{\pi}{8}-1$				Allswer	1
#	Arcsin(f	(3) + Are	csec $(g(1)$)	#	For what x – value is $p(x) = \frac{g(x)+5}{f(x)-6}$ undefined?

Directions: Beginning in cell #1, read the question and show the work necessary to answer it (attach separate sheets if necessary). Search for your answer and call that cell #2. Continue in this manner until you complete the circuit. Note: The last question will not have a match!

#1 Find the slope of the line which connects the point (b, 3b) to the point (3b, 6b). [Note: $b\neq 0$.]

_____ The graph of y = $2 \sin(3x - \frac{\pi}{2})$ has an amplitude of _____, a period of _____, and a phase shift of _____ to the _____ (left/right) when

compared to the graph of y = sinx.

Answer: $\frac{2e}{1-e}$

_____ As x grows infinitely large, the value of $h(x) = \frac{2x}{5x + 8}$ approaches what number? Answer: 4/5

_____ Find the average rate of change of $w(x) = 3x^2 + 1$ over the interval [-1, 4].

Answer: 75

____ For $\frac{\pi}{2} \le A \le \pi$, $sinA = \frac{3}{5}$. Find sin(2A).

#_____ If f(x) = lnx and $g(x) = e^{x+1}$, find f(g(2)) - g(f(e)).

#_____ $f(x) = g^{-1}(x)$ and $g(x) = \frac{2x}{x-1}$; f(5) = ? | #_____ $\log_{10} 25 + \log_{10} 4 =$

Answer: [-2, 2]

#_____ Solve for x: $e^{2x+1} - 3 = 0$

Answer: x = -3

#____ State the domain of $y = \ln(x - 2)$.

Answer: 2/5

The expression $3x^2$ is used to calculate the slope at any point on the graph of the function $g(x) = x^3 - 1$. Write the equation of the line tangent to g(x) at its x-intercept.

Answer: 3/2

The linear function f(x) is parallel to the line $y = \frac{4}{5}x - 7$ and passes through the point (-5, 0). What is f(-6)?

Answer: -4/5	Answer: 2
# The quadratic function g(x) has a vertex at (-5, 0) and y-intercept of (0, -5). What is g(1)?	# The graph of $g(x) = -\sqrt{4-x^2}$ is a semicircle in quadrants III and IV. Find the domain of $g(x)$.
Answer: 4 # Simplify the expression $\frac{x^3+125}{x+5}$ and then evaluate the resulting expression for x = -5.	Answer: 26 # Find $x^2 - y^2$ given that $x + y = 7$ and $x - y = 3$.
Answer: $3 - e^2$ # Given $f(x) = x^2 + 5$, find $\frac{f(3+h)-f(3)}{h}$ $(h \neq 0)$.	Answer: 36 # State the range of $w(x) = \frac{2x+1}{x+3}$.
Answer: $x > 2$ # $81^{\frac{3}{4}} + 8^{\frac{2}{3}} + 125^{\frac{1}{3}}$	Answer: -24/25 # The graphs of $g(x) = \ln(x+3)$ and $f(x) = \frac{2x+1}{x+3}$ have the same vertical asymptote. What is it?
Answer: 5/3 # Solve for x: $\ln(x) - \ln(x + 2) = 1$	Answer: $y = 3x - 3$ # Evaluate $g(x) = 5\sin x + \cos(2x)$ for $x = \frac{\pi}{2}$.
Answer: -36/5 # Find the average rate of change of the function $p(x) = \frac{4}{5}x - 2$ from x=0 to x=15.	Answer: 6 + h # If the perimeter of a rectangle is 68 and the width is 10, find the length of a diagonal.

Beginning in cell #1, use a combination of analytic methods and a graphing calculator to solve the problem. Show how you arrived at your answer, even if a lot of your work was done on the calculator. Hunt for your answer and call this problem #2. Continue in this manner until you complete the circuit. Note: Answers are rounded or truncated to three decimal places. Also, make sure you know HOW to do these on the test when there are no answer choices!

Answer:	0.510	Answer:	
	the average rate of change for the function $f(x) = 3e^{-x}$ from $f(x) = 7$.	#	The function $r(x) = \frac{x+2}{2x-3}$ has a horizontal asymptote of y =
Answer:	-1.750 Find $f(g\left(-\frac{4\pi}{7}\right))$ if $f(x) = \begin{cases} x - 2, & x \le 0 \\ \frac{3}{x}, & x > 0 \end{cases}$ and $g(x) = \tan x$.	Answer:	5.832 Find the zero of $f(x) = 3 - 2^x$.
Answer: #	1.585 Suppose the number of cases of a rare disease is able to be reduced by 25% annually. If there are 4000 cases nationwide, how many years will it take to reduce the number of cases to 300?	Answer:	
Answer: #	0.500 If $f(g(x)) = g(f(x)) = x$, and $g(x) = 2 + \ln(x + 1)$, find $f(4)$.	Answer:	9.899 A cone has a height which is one-sixth the radius. If the radius is two, what is the volume of the cone?
Answer:	1.396 $g(x) = \ln(x - 4)$ and $f(x) = \frac{1}{2}x^2 + 3$. Find $f(g(6))$.	Answer:	0.685 A drug is administered intravenously for eight hours, $0 \le t \le 8$, and the function $f(t) = 32 - 8.2 \ln(1 + 2t)$ gives the number of units of the drug in the body after t hours. How many units are present after 7 hours (at time $t = 7$)?

Answer:	9.004	Answer:	-1.019
#	What is the period of $y = \sin(4x)$?	#	For $g(x) = -3x^2 + 5.2x + 7$, find the maximum value of the function.
Answer:	1.760	Answer:	0.456 What is the minimum value of
#	Solve for θ , $\frac{3\pi}{2} \le \theta \le 2\pi$. $\cos \theta = 0.9$		$y = -3\cos t + 1.25?$
Answer:	9.794 The function $w(t) = 0.8t + 5$ gives the	Answer:	3.240
#	The function $v(t) = -9.8t + 5$ gives the instantaneous velocity (in m/sec) of an object	#	Solve the non-linear system $\begin{cases} y = \sqrt{x+2} \\ y = 1.1x^5 \end{cases}$.
	thrown upward with an initial velocity of 5 m/sec. At what time t does the object start falling?		To advance in the circuit, locate the y-coordinate of the solution.
Answer:	9.253 An isosceles right triangle has a leg of 7 cm.	Answer:	6.389 Solve $\cos(3x) = 5$ on the even interval $\begin{pmatrix} 0 & \pi \end{pmatrix}$
	What is the length of the hypotenuse, in cm?	#	Solve $\sec(3x) = 5$ on the open interval $\left(0, \frac{\pi}{6}\right)$.
Answer:	0.286 $log_37 = ?$	Answer:	
	ornolius 2015	#	The function $f(x) = \frac{x+2}{2x-3}$ has a vertical asymptote at $x = \underline{\hspace{1cm}}$.

© Virge Cornelius 2015